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On the Integral Equations of Laser Theory*

SAMUEL P. MORGANY, FELLOW, TEEE

Summary—Mathematical comments are made on a class of
integral equations with complex symmetric kernels which occur in
laser theory. It is pointed out that integral equations of this class
do not have some of the well-known properties of integral equations
with Hermitian kernels. In particular, the usual extremal principle
by which the eigenvalues of a Hermitian kernel may be estimated
using the Rayleigh-Ritz procedure does not apply to integral equa-
tions with complex symmetric kernels. It is suggested that the use of
variational techniques to calculate diffraction losses in laser inter-
ferometers leads to results of doubtful accuracy.

in certain integral equations which arise in laser

Jl 2ECENTLY considerable interest has developed
theory. These equations are usually of the form

K@ w6y = w0, 0

with a complex-valued symmetric kernel which is not
Hermitian, that is

K(x,y) = K(y,x) but K(x,3) # K(y,2). (2

A typical such equation, which relates to a laser with
parallel plane reflectors, is

f etk (Jv-y)?'(y)dy = Kf(x), (3)

where x is real.

It is the purpose of this paper to point out that in-
tegral equations with complex symmetric kernels do
not, as a class, possess certain of the familiar properties
of equations with Hermitian kernels. In particular, it is
suggested that the use of variational techniques!? to
calculate approximate eigenvalues of an equation such
as (3) leads to results of doubtful accuracy.

Most of the standard textbook treatment of homo-
geneous linear integral equations of the second kind
relates to equations with Hermitian kernels, including
real symmetric kernels as a special case. It is well
known, for example, that 1) every Hermitian kernel
which does not vanish almost everywhere has at least
one eigenvalue (we do not count zero as an eigenvalue),
2) the eigenvalues of a Hermitian kernel are necessarily
real, 3) the eigenvalues of a Hermitian kernel H(x, y)
are the stationary values of the variational quotient
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ffWH(x,y)qS(y)dxdy
0lgl = ——— — €y
[ st

and 4) Q[¢] is a lower bound for the largest eigenvalue
K1, Wlth K1 = max Q [¢]

It does not seem to be universally recognized that
these properties of Hermitian kernels are not shared by
complex symmetric kernels. Part of the theory does go
through for normal kernels, that is, kernels for which

b 3

[ K 9KG, 90 = [ KK s )
but the kernel of (3) is not even of this class. In general,
for complex syvmmetric kernels 1), 2), and 4) are not
true, and 3) is true only in a modified form which is of
limited usefulness. We shall discuss each of these points
briefly.

To see that a complex symmetric kernel need not
have eigenvalues, one has only to consider the integral
equation

1
I+ i3+ ivV3p)dy = ().  (6)
-1
If there were an eigenfunction, it would have to be of
the form

Y(x) = A1+ iv3 ). (7
But

1
(1 + iv/3y)dy = 0, (8)
—1
and so the equation has no nontrivial solution. If the
sign of one of the 7's in (6) were changed, of course, the
kernel would be Hermitian, and would have the eigen-
value 4.

The question whether a complex symmetric kernel
has any eigenvalues must at present be settled on a
more or less individual basis. So far as we know, no
mathematical theorem has ever been published which
would guarantee a priori that such an equation as (3)
actually has eigenvalues. For this particular example, of
course, the existence of eigenvalues has been made
morally certain by the iterative numerical computa-
tions of Fox and Li?

3A. G. Fox and T. Li, “Resonant modes in a maser interfer-
ometer,” Bell Sys. Tech. J., vol. 40, pp. 453-488; March, 1961.
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If a complex symmetric kernel has eigenvalues, they
are likely to be complex. This is certainly the case for
(3), as well as for the simpler example which will be
treated below.

It has been correctly pointed out!:? that the eigen-
values of a complex symmetric kernel are given by the
stationary values of the ratio

f,bfa b¢(x)K (x, 9)¢(y)dady

/ g2(a)

This differs from the expression Q[¢ | which can be used
in the Hermitian case, in that R[¢] does not involve
any complex conjugates. Formally it is true that
R[¢] is a variational expression for the eigenvalues;
that is, if ¢(x) is “close” to some eigenfunction ¥(x),
then R[¢] will in some sense be “very close” to the
corresponding eigenvalue k. However, the complex-
valued ratio R|[¢ ] is not as useful for complex symmetric
kernels as the real quotient Q[¢] is for Hermitian
kernels, because R[¢] does not lead to an extremal
principle. In particular it is nof true that ]R[d)ﬂ is a
lower bound on |k|. The following example shows that
IR[¢]| is not generally a bound of any kind.
Consider the integral equation

R[¢]

(9)

[ 1436+ DMy = s, (10

-1

where k is real and greater than zero. It is easy to show
that the eigenvalues of (10) are

ke =14+ (1 — 4&%)'3 (11)
corresponding to the eigenfunctions
Yio(x) = 1 4+ (1 — 4k2)Y2 + 2ik+/3 «, (12)

where the upper sign goes with the first subscript and
the lower sign with the second subscript. The varia-
tional ratio for (10) is

f o@)[1 + k3 (& + 9)]6()dxdy

Rl¢] = (13)

1
P*(x)dx
-1

If the difference between ¢(x) and Y1(x) or ¢s(x) is a
small quantity of order e, then R[¢] differs from &
or k2 by a complex quantity of order €% but in general
nothing can be said about the phase of the error. If the
trial function ¢(x) is unrestricted, it is perfectly possible
for R[¢] to be zero or to be infinite. For example,
straightforward calculation yields
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R[1 — 322 =0, R[1+iV/3x]= oo,

except that the second expression takes the form 0/0
in the degenerate case k=1%.

The upshot of all this is that one is always free to
guess an approximate eigenfunction ¢(x) of a complex
symmetric kernel and to call R[¢] an approximate
eigenvalue, but there is no way of knowing a priors
how close the result is to the actual eigenvalue k, or in
what direction R[¢] differs from k. Furthermore it ap-
pears impossible to use the Rayleigh-Ritz procedure, as
has been suggested,! to refine a complex eigenvalue,
since in the absence of a maximum or minimum prin-
ciple what criterion can be used to adjust the pa-
rameters of a trial function to get closer to the exact
eigenvalue?

We shall now comment briefly on the numerical
results which have been obtained"? by applying the
variational technique to an equation equivalent to (3).
In dimensionless form, the equation which has been
studied may be written*

(14)

1
N [ ey G)y = ). (19)
—1

where N(=a?/b\) is a parameter depending upon the
laser dimensions and the wavelength. The first two
eigenvalues «; and k; have been estimated for N=%, 1,
2, 3, 4, by setting

¢1(x) = cosmx/2,

¢2(x) = sinwwx,

(16)

in the variational quotient (9).

The magnitudes of both || and || approach unity
as N increases, and these magnitudes!:? agree well with
those which Fox and Li obtained by a lengthy iterative
calculation. However, the quantity of greatest physical
interest is not k but the relative power loss per transit,
which is 1 —[ | % Tables T and 1T show the power loss as
computed for the lowest even and odd modes by the
variational procedure!? and by the iterative tech-
nique.?

Inspection of Tables I and II indicates that agree-
ment between the two calculations of loss is not very
good, and that it gets worse as N increases. It has been
asserted! that the variational method becomes more ac-
curate the larger the value of N. If one is interested in
power loss, there is good reason to believe that the
reverse is true, since the closer | KI is to unity, the more
seriously do small errors of unknown sense affect the
value of 1——‘/< 2, Also, since one does not know that
|R[¢]’ < t K1| for a complex symmetric kernel, there is

4 The eigenvalue « was denoted by 1/v in Tang? and Fox and Li.?

5 The column headed “Fox and Li” contains the numerical values
used to plot Fox and Li's Fig. 8.2 These values were kindly supplied
by the authors.
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TABLE I

Power Loss per TraNsIT FOR DoMiNANT MODE
BETWEEN PARALLEL STRIP MIRRORS

Loss=1~|i |2
N
Variational method I Iterative method
1 0.1639 0.1740
1 0.0607 0.0800
2 0.0217 ‘ 0.0320
3 0.0108 , 0.0194
4 0.0080 | 0.0129
TABLE II

Power Loss pER TrRANsIT FOR L.owesT Opp MODE
BETWEEN PARALLEL STRIP MIRRORS

Loss =1 — | k|2
N
Variational method ‘ Iterative method

i 0.6035 0.5397
1 0.2401 0.2698
2 0.0863 0.1207
3 0.0468 0.0703
4 0.0308 0.0478
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no reason for presuming that the variational values of
|| are better than the iterative ones because they
are larger than the latter values. In this connection it is
interesting to note that the variational values for |«
do not all lie on the same side of the iterative results.

The foregoing remarks are not intended to keep
anyone from applying variational principles to integral
equations with complex symmetric kernels if he so de-
sires. One pays for the “efficiency” of the variational
technique by not knowing how accurate the approxi-
mate eigenvalue really is, or whether, if one tries
another assumed eigenfunction, the second approxima-
tion is better or worse than the first. We merely wish
to point out how little is actually known, in a mathe-
matical sense, about integral equations of this type. We
believe that computer-generated numerical solutions,
although admittedly laborious, will furnish the most
reliable results that we are likely to get from the in-
tegral equations of laser theory, at least until someone
develops an adequate analytic theory of integral equa-
tions with complex symmetric kernels.

The Dipolar Resonance of the Cylindrical
Low-Pressure Arc Discharge*

JOSEPH H. BATTOCLETTI{, SENIOR MEMBER, IEEE

Summary—When an em wave of fixed frequency is incident on
the cylindrical positive column of a low-pressure arc discharge,
nearly complete absorption occurs at a definite value of discharge
current [y as the discharge current is varied. I, yields a plasma elec-
tron density which corresponds to the well-known cylindrical, or
dipolar, plasma resonance frequency f,. The ratio f,/f, where f, is the
ordinary (plane) plasma frequency, has been determined by others
using a quasi-static approach. In this paper a dynamic approach is
used, and comparison is made with the quasi-static approach. Agree-
ment is within 3 per cent for values of 84a less than 0.25. For 8.a equal
to 0.60, the discrepancy in the quasi-static method is 15 per cent.

Theoretical calculations as well as experimental evidence indi-
cate that the electron sheath, which exists on the outside surface of
the positive column, plays a significant role in the location of the
dipolar plasma resonance.
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Application of the results of this paper improve the agreement
between theory and experiment for the Plasma Microwave Coupler
described by Steier and Kaufman.

I. INTRODUCTION

HEN AN EM WAVE of fixed frequency is
incident on the cylindrical positive column of a

low-pressure mercury-vapor discharge, a spec-
trum of resonances of reflection and transmission occurs
as the discharge current of the positive column is
varied. Nearly complete absorption occurs at a definite
value of current [y, which yields a plasma density
corresponding to the well-known cylindrical, or dipolar,
plasma resonance frequency. If the discharge current is
maintained constant, an analogous spectrum of reso-
nances occurs as the frequency of the incident em wave is
varied. Nearly complete absorption occurs at a def-
inite value of frequency f, which is the dipolar plasma
resonance frequency. If the plasma electron density is
assumed to be linearly related to the discharge current,



