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On the Integral Equations of Laser Theory*

SAMUEL P. MORGAN~, FELLOW, IEEE

Surnmary-Mathematical comments are made on a class of

integral equations with complex symmetric kernels which occur in

laser theory. It is pointed out that integrad equations of this class

do not have some of the well-known properties of integral equations

with Hermitian kernels. In particular, the usual extremal principle

by which the eigenvalues of a Hermitian kernel may be estimated

using the Rayleigh-Ritz procedure does net apply to integral equa-

tions with complex symmetric kernels. It is suggested that the use of

variational techniques to calculate diffraction losses in laser inter-

ferometers leads to results of doubtful accuracy.

R)
ECEiYTLY considerable interest has developed

in certain integral equations which arise in laser

theory. These equations are usually of the form

s
b

K(x, y)lj(y)dy = f+($)> (1)
a

with a complex-valued symmetric kernel which is not

Hermitian, that is

~(~, y) = ~(y, *) but K“(Y, y) # ~(y, *) (2)

A typical such equation, which relates to a laser with

parallel plane reflectors, is

s
1
,Oc(.-u)y(y)dy = fcj(~),

–1

(3)

where x is real.

It is the purpose of this paper to point out that in-

tegral equations with complex s] mmetric kernels do

not, as a class, possess certain of the familiar properties

of equations with Hermitian kernels. In particular, it is

suggested that the use of variaticjnal techniquesl, z to

calculate approximate eigeuvalues of an equation such

as (3) leads to results of doubtful accuracy.

Most of the standard textbook treatment of homo-

geneous linear integral equations of the second kind

relates to equations with Hermitian kernels, including

real symmetric kernels as a special case. It is well

known, for example, that 1) every Hermitiau kernel

which does not vanish almost ever}-where has at least

one eigenvalue (we do not count zero as au eigenvalue),

2) the eigenvalues of a Hermitian k.cruel m-e necessarily

real, 3) the eigenvalues of a Hermitian kernel 11(x, y)

are the stationary values of the variational quotient
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and 4) Q [c+] is a lower bound for the largest eigenvalue

KI, with KI= max Q[@].

It does not seem to be universally recognized that

these properties of Hermitian kernels are not shared by

complex symmetric kernels. Part of the theory does go

through for normal kernels, that is, kernels for which

s
b

f–

b

K(.r, z)K(y, Z)dz = K-(.2, ~K-(z, y)dz ; (5)
a a

but the kernel of (3) is not even of this class. In general,

for complex symmetric kernels 1), 2), and 4) are not

true, and 3) is true only in a modified form which is of

limited usefulness. We shall discuss each of these points

briefly.

To see that a complex symmetric kernel need not

have eigenvalues, one has only to consider the integral

equation

s
1

(1 + ;<j $)(1 + i<~y)lj(y)dy ‘= K+(X). (6)
–1

If there were an eigeufunction, it would have to be of

the form

+(x) = A(1 + i<j x). (7)

But

s

1

(1 + iti~y)’dy = o, (8)
—1

and so the equation has no nontrivial solution, If the

sign of one of the i’s in (6) were changed,, of course, the

kernel would be I-Iermitian, and would have the eigen-

value 4.

The question whether a complex symmetric kernel

has any eigenvalues must at present be settled on a

more or less individual basis. So far as we know, no

mathematical theorem has ever been published which

would guarantee a Priori that such an equation as (3)

actually has eigeuvalues. For this particular example, of

course, the existence of eigeuvalues has been made

morally certain by the iterative numerical computa-

tions of Fox and Li.3

3 A. G. Fox and T. Li, “Resonant modes in a maser interfer-
ometer, ” Bell .Sys. Tech. J., vol. 40, pp. 453–488; March, 1961.
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If a complex symmetric kernel has eigenvalues, they

are likely to be complex. This is certainly the case for

(3), as well as for the simpler example which will be

treated below.

It has been correctly pointed outl,z that the eigen-

values of a complex symmetric kernel are given by the

stationary values of the ratio

bb

Ss
o($)~(% Y)@(Y)~~~Y

R[@]= “ ‘ , (9)

s
&(x)dx

a

This differs from the expression Q [@ ] which can be used

in the Hermitian case, in that R [d] does not involve

any complex conjugates. Formally it is true that

R [@ ] is a variational expression for the eigenvalues;

that is, if d(x) is “close” to some eigenfunction l(x),

then R [0] will in some sense be “very close” to the

corresponding eigenvalue K. However, the complex-

valuecf ratio R [O ] is not as useful for complex symmetric

kernels as the real quotient Q [~ ] is for Hermitian

kernels, because R [O ] does not lead to an extremal

principle. In particular it is not true that I R [~]\ is a

lower bound on I K1\. The following example shows that

lR[~]l is not generally a bound of any kind.

Consider the integral equation

s

1

[1+ ih<~ (~ + y)]~(y)dy = KYJ(x), (lo)
–1

where k is real and greater than zero. It is easy to show

that the eigenvalues of (10) are

K1,2 = 1 f (1 — &)l/2 ? (11)

corresponding to the eigenfunctions

Y1,2(x) = 1 ~ (1 – 4k2)’f2 + 2ik<~ x, (12)

where the upper sign goes with the first subscript and

the lower sign with the second subscript. The varia-

tional ratio for (10) is

11

Ss O(Z)[1 + ik~~ (x + y)]o(y)dzdy

R[@] = ‘1 ‘1

s
1

@’(x)dx
–1

If the difference between ~(x) and 11(x) or 42(x)

(13)

is a

small quantity of order e, then R [+ ] differs from KI

or K.Z by a complex quantity of order 62, but in general

nothing can be said about the pkase of the error. If the

trial function @(x) is unrestricted, it is perfectly possible

for R [~] to be zero or to be infinite. For example,

straightforward calculation yields

R[l – 3X’] = o, R[1+;<3%] = ~, (14)

except that the second expression takes the form 0/0

in the degenerate case k = ~.

The upshot of all this is that one is always free to

guess an approximate eigenfunction +(x) of a complex

symmetric kernel and to call R [@] an approximate

eigenvalue, but there is no way of knowing a priori

how close the result is to the actual eigenvalue K, or in

what direction R [0] differs from K. Furthermore it ap-

pears impossible to use the Rayleigh-Ritz procedure, as

has been suggested, 1 to refine a complex eigenvalue,

since in the absence of a maximum or minimum prin-

ciple what criterion can be used to adjust the pa-

rameters of a trial function to get closer to the exact

eigenvalue?

We shall now comment briefly on the numerical

results which have been obtainedl’z by applying the

variational technique to an equation equivalent to (3).

In dimensionless form, the equation which has been

studied may be writtenk

s1jvl[2e,7r[4 ~-tm.v(+’+(y)dy = K+(*). (15)
–1

where N( = a2/bA) is a parameter depending upon the

laser dimensions and the wavelength. The first two

eigenvalues KI and K2 have been estimated for N= $, 1,

2, 3, 4, by setting

@,(x) = Cos 7rx/2,

@z(x) = sin TX, (16)

in the variational quotient (9).

The magnitudes of both \ KII and [ KJ] approach unity

as N increases, and these magnitudesl’z agree well with

those which Fox and Li obtained by a lengthy iterative

calculation. However, the quantity of greatest physical

interest is not K but the relative power loss per transit,

which is 1 — I KI 2. Tables I and II show the power loss as

computed for the lowest even and odd modes by the

variational procedural, 2 and by the iterative tech-

nique. b

Inspection of Tables I and II indicates that agree-

ment between the two calculations of loss is not very

good, and that it gets worse as N increases. It has been

assertedl that the variational method becomes more ac-

curate the larger the value of N. If one is interested in

power loss, there is good reason to believe that the

reverse is true, since the closer I K ] is to unity, the more

seriously do small errors of unknown sense affect the

value of 1—IKI ‘. Also, since one does not know that

I R[@] I < I KII for a complex symmetric kernel, there is

4 The eigenvalue K was denoted by 1/y in Tangz and Fox and Li.3
5The column headed “Fox and Li” contains the numerical values

used to plot Fox and Li’s Fig. 8.8 These values were kindly supplied
b>- the authors.
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TABLE I

POWER LOSS PER TRANSIT FOR DOMINANT MODE
BETWEEN PARALLEL STRIP MIRRORS

——
Loss= I–IM]Z

N
Variational method Iterative method

+ 0.1639 0.1740
0.0607 0.0800

; 0.0217 0.0320
3 0.0108
4

0.0194
0.0080 I 0.0129

—

TABLE II

POWER Loss PER TRANSH FOR LOWEST ODD MODE
BETWEEN PARALLEL STRIP MIRRORS

LOSS= l–[K,12
N

Variational method Iterative method

~ 0.6035 0.5397
0.2401

:
0.2698

0.0863 0.1207
0.0468

:
0.0703

0.0308 0.0478

no reason for presuming that the variational values of

1.~l are better than the iterative ones because they

are larger than the latter values. In this connection it is

interesting to note that the variational values for I K: \

do not all lie on the same side of the iterative results.

The foregoing remarks are not intended to keep

anyone from applying variational principles to integral

equations with complex symmetric kernels if he so de-

sires. One pays for the ‘~efficiency” of the variational

technique by not knowing how accurate the approxi-

mate eigenvalue really is, or whether, if one tries

another assumed eigenfunction, the second approxima-

tion is better or worse than the first. We merely wish

to point out how little is actually known, in a mathe-

matical sense, about integral equations of this type. We

believe that computer-generated numerical solutions,

although admittedly laborious, will furnish the most

reliable results that we are likely to get from the in-

tegral equations of laser theory, at least until someone

develops an adequate analytic theory of integral equa-

tions with complex symmetric kernels.

The Dipolar Resonance of the Cylindrical

Lo~w-Pressure Arc Discharge*

JOSEPH H. BATTOCLETTI~, SENIOR MEMBER, IEEE

Summary—When an em wave of fixed frequency is incident on

the cylindrical positive column of a low-pressure arc discharge,

nearly complete absorption occurs at a ciefinite value of discharge

current Io as the discharge current is varied. Io yields a plasma elec-

tron density which corresponds to the well-known cylindrical, or

dipolar, plasma resonance frequency jo. The ratio ~P/~o where ~, is the

ordinary (plane) plasma frequency, has been determined by others

using a quasi-static approach. In thk paper a dynamic approach is

used, and comparison is made with the quasi-static approach. Agree-

ment is within 3 per cent for values of fl~a less than 0.25. For (30aequal
to 0.60, the discrepancy in the quasi-static method is 15 per cent.

Theoretical calculations as well as experimental evidence indi-

cate that the electron sheath, which exists on the outside surface of
the positive column, plays a significant role in the location of the
dipolar plasma resonance.
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Application of the results of thk paper improve the agreement

between theory and experiment for the Plasma Microwave Coupler

described by Steier and Kaufman.

1. INTRODUCTION

w HEN AN EN! W.4VE of fixed frequency is

incident on the cylindrical positive COIU mn of a

low-pressure mercury-vapor discharge, a spec-

trum of resonances of reflection and transmission occurs

as the discharge current of the positive column is

varied. Nearly complete absorption occurs at a definite

value of current 10 which yields a plasma density

corresponding to the well-known cylindrical, or dipolar,

plasma resonance frequency. If the discharge current is

maintained constant, an analogous spectrum of reso-

nances occurs as the frequency of the incident em wave is

varied. Nearly complete absorption occurs at a def-

inite value of frequency ~. which is the dipolar plasma

resonance frequency. If the plasma electron density is

assumed to be linearly related to the discharge cm-rent,


